On the resolution of monotone complementarity problems
نویسندگان
چکیده
A reformulation of the nonlinear complementarity problem (NCP) as an unconstrained minimization problem is considered. It is shown that any stationary point of the unconstrained objective function is already a solution of NCP if the mapping F involved in NCP is continuously differentiable and monotone. A descent algorithm is described which uses only function values of F. Some numerical results are given.
منابع مشابه
Improved infeasible-interior-point algorithm for linear complementarity problems
We present a modified version of the infeasible-interior- We present a modified version of the infeasible-interior-point algorithm for monotone linear complementary problems introduced by Mansouri et al. (Nonlinear Anal. Real World Appl. 12(2011) 545--561). Each main step of the algorithm consists of a feasibility step and several centering steps. We use a different feasibility step, which tar...
متن کاملA full Nesterov-Todd step infeasible interior-point algorithm for symmetric cone linear complementarity problem
A full Nesterov-Todd (NT) step infeasible interior-point algorithm is proposed for solving monotone linear complementarity problems over symmetric cones by using Euclidean Jordan algebra. Two types of full NT-steps are used, feasibility steps and centering steps. The algorithm starts from strictly feasible iterates of a perturbed problem, and, using the central path and feasi...
متن کاملInterior Point Trajectories and a Homogeneous Model for Nonlinear Complementarity Problems over Symmetric Cones
We study the continuous trajectories for solving monotone nonlinear mixed complementarity problems over symmetric cones. While the analysis in [5] depends on the optimization theory of convex log-barrier functions, our approach is based on the paper of Monteiro and Pang [17], where a vast set of conclusions concerning continuous trajectories is shown for monotone complementarity problems over t...
متن کاملHamburger Beitrage zur Angewandten Mathematik Beyond Montonicity in Regularization Methods for Nonlinear Complementarity Problems
Regularization methods for the solution of nonlinear complementarity problems are standard methods for the solution of monotone complementarity problems and possess strong convergence properties. In this paper, we replace the monotonicity assumption by a P0-function condition. We show that many properties of regularization methods still hold for this larger class of problems. However, we also p...
متن کاملError Bounds for R0-Type and Monotone Nonlinear Complementarity Problems
The paper generalizes the Mangasarian-Ren 10] error bounds for linear complementarity problems (LCPs) to nonlinear complementarity problems (NCPs). This is done by extending the concept of R 0-matrix to several R 0-type functions, which include a subset of monotone functions as a special case. Both local and global error bounds are obtained for the R 0-type and some monotone NCPs.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Comp. Opt. and Appl.
دوره 5 شماره
صفحات -
تاریخ انتشار 1996